3.589 \(\int \frac {x^3}{(a+b x^n+c x^{2 n})^{3/2}} \, dx\)

Optimal. Leaf size=151 \[ \frac {x^4 \sqrt {\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}+1} \sqrt {\frac {2 c x^n}{\sqrt {b^2-4 a c}+b}+1} F_1\left (\frac {4}{n};\frac {3}{2},\frac {3}{2};\frac {n+4}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{4 a \sqrt {a+b x^n+c x^{2 n}}} \]

[Out]

1/4*x^4*AppellF1(4/n,3/2,3/2,(4+n)/n,-2*c*x^n/(b-(-4*a*c+b^2)^(1/2)),-2*c*x^n/(b+(-4*a*c+b^2)^(1/2)))*(1+2*c*x
^n/(b-(-4*a*c+b^2)^(1/2)))^(1/2)*(1+2*c*x^n/(b+(-4*a*c+b^2)^(1/2)))^(1/2)/a/(a+b*x^n+c*x^(2*n))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 151, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {1385, 510} \[ \frac {x^4 \sqrt {\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}+1} \sqrt {\frac {2 c x^n}{\sqrt {b^2-4 a c}+b}+1} F_1\left (\frac {4}{n};\frac {3}{2},\frac {3}{2};\frac {n+4}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{4 a \sqrt {a+b x^n+c x^{2 n}}} \]

Antiderivative was successfully verified.

[In]

Int[x^3/(a + b*x^n + c*x^(2*n))^(3/2),x]

[Out]

(x^4*Sqrt[1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[4/n, 3/2
, 3/2, (4 + n)/n, (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])/(4*a*Sqrt[a + b*x^n
 + c*x^(2*n)])

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 1385

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a +
 b*x^n + c*x^(2*n))^FracPart[p])/((1 + (2*c*x^n)/(b + Rt[b^2 - 4*a*c, 2]))^FracPart[p]*(1 + (2*c*x^n)/(b - Rt[
b^2 - 4*a*c, 2]))^FracPart[p]), Int[(d*x)^m*(1 + (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^n)/(b - Sqrt
[b^2 - 4*a*c]))^p, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n]

Rubi steps

\begin {align*} \int \frac {x^3}{\left (a+b x^n+c x^{2 n}\right )^{3/2}} \, dx &=\frac {\left (\sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}}\right ) \int \frac {x^3}{\left (1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}\right )^{3/2} \left (1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )^{3/2}} \, dx}{a \sqrt {a+b x^n+c x^{2 n}}}\\ &=\frac {x^4 \sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}} F_1\left (\frac {4}{n};\frac {3}{2},\frac {3}{2};\frac {4+n}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{4 a \sqrt {a+b x^n+c x^{2 n}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.86, size = 398, normalized size = 2.64 \[ \frac {x^4 \left (32 b c x^n \sqrt {\frac {-\sqrt {b^2-4 a c}+b+2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {\frac {\sqrt {b^2-4 a c}+b+2 c x^n}{\sqrt {b^2-4 a c}+b}} F_1\left (\frac {n+4}{n};\frac {1}{2},\frac {1}{2};2+\frac {4}{n};-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}},\frac {2 c x^n}{\sqrt {b^2-4 a c}-b}\right )-(n+4) \left (b^2 (n-8)-4 a c (n-4)\right ) \sqrt {\frac {-\sqrt {b^2-4 a c}+b+2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {\frac {\sqrt {b^2-4 a c}+b+2 c x^n}{\sqrt {b^2-4 a c}+b}} F_1\left (\frac {4}{n};\frac {1}{2},\frac {1}{2};\frac {n+4}{n};-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}},\frac {2 c x^n}{\sqrt {b^2-4 a c}-b}\right )-8 (n+4) \left (-2 a c+b^2+b c x^n\right )\right )}{4 a n (n+4) \left (4 a c-b^2\right ) \sqrt {a+x^n \left (b+c x^n\right )}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x^3/(a + b*x^n + c*x^(2*n))^(3/2),x]

[Out]

(x^4*(-8*(4 + n)*(b^2 - 2*a*c + b*c*x^n) - (b^2*(-8 + n) - 4*a*c*(-4 + n))*(4 + n)*Sqrt[(b - Sqrt[b^2 - 4*a*c]
 + 2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[
4/n, 1/2, 1/2, (4 + n)/n, (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^n)/(-b + Sqrt[b^2 - 4*a*c])] + 32*b*c*x^n
*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b + S
qrt[b^2 - 4*a*c])]*AppellF1[(4 + n)/n, 1/2, 1/2, 2 + 4/n, (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^n)/(-b +
Sqrt[b^2 - 4*a*c])]))/(4*a*(-b^2 + 4*a*c)*n*(4 + n)*Sqrt[a + x^n*(b + c*x^n)])

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(a+b*x^n+c*x^(2*n))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3}}{{\left (c x^{2 \, n} + b x^{n} + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(a+b*x^n+c*x^(2*n))^(3/2),x, algorithm="giac")

[Out]

integrate(x^3/(c*x^(2*n) + b*x^n + a)^(3/2), x)

________________________________________________________________________________________

maple [F]  time = 0.01, size = 0, normalized size = 0.00 \[ \int \frac {x^{3}}{\left (b \,x^{n}+c \,x^{2 n}+a \right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(b*x^n+c*x^(2*n)+a)^(3/2),x)

[Out]

int(x^3/(b*x^n+c*x^(2*n)+a)^(3/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3}}{{\left (c x^{2 \, n} + b x^{n} + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(a+b*x^n+c*x^(2*n))^(3/2),x, algorithm="maxima")

[Out]

integrate(x^3/(c*x^(2*n) + b*x^n + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x^3}{{\left (a+b\,x^n+c\,x^{2\,n}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(a + b*x^n + c*x^(2*n))^(3/2),x)

[Out]

int(x^3/(a + b*x^n + c*x^(2*n))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3}}{\left (a + b x^{n} + c x^{2 n}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(a+b*x**n+c*x**(2*n))**(3/2),x)

[Out]

Integral(x**3/(a + b*x**n + c*x**(2*n))**(3/2), x)

________________________________________________________________________________________